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Abstract

The software crisis within scientific computing has been
that application codes become larger and more complex.
The only conceivable solution is to make application codes
smaller and less complex. We know of no way to resolve this
crisis, except to make each line of code mean more; this is
the process of defining high-level abstractions. Achieving
high-performance from high-level abstractions represents
an essential key to simplifying scientific software.

This paper presents several high-level abstractions used
within scientific computing. These abstractions are part
of multiple object-oriented libraries and represent complex
and precise semantics. In each case the semantics of the
abstraction is user-defined and ignored by the compilation
process at a significant performance penalty for the ap-
plication code. Our research work presents a mechanism
to analyze and optimize the use of high-level abstractions
within scientific applications. In this paper, we show that
the high-level abstractions are not just significantly easier
to use in the development of application code but can be
made to perform equivalently to hand-coded C and For-
tran. Our research work shows how to effectively treat any
object-oriented library and its abstractions as if it where a
domain-specific language with equivalent builtin types and
specialized compile-time analysis and optimizations. With
acceptable performance of high-level abstractions within
scientific software, we expect that application codes can be
made smaller and less complex; allowing much more com-
plex applications to be built in the future.

1. Introduction

The software crisis within scientific computing has been
that application codes become larger and more complex.
The only conceivable solution is to make application codes
smaller and less complex. We know of no way to resolve

�This work was performed under the auspices of the U.S. Department
of Energy by University of California Lawrence Livermore National Lab-
oratory under contract No. W-7405-Eng-48.

this crisis, except to make each line of code mean more; this
is the process of defining high-level abstractions. Achieving
high-performance from high-level abstractions represents
an essential key to simplifying scientific software.

The development of new languages requires significant
time for the language to mature and requires a significant
user base. The standards process for C++, for example,
has taken many years; generally languages evolve at a slow
pace. However, the required size of the user base tends
to prevent the language being biased to any particular do-
main. In contrast, libraries are cheaper to develop, permit
the relatively quick development of high-level abstractions,
and don’t require as large of a target user base to justify
their development. As a result, libraries can more readily
provide highly specialized abstractions which simplify ap-
plication development. However, the abstractions within a
language are generally better defined and their performance
benefits from compile-time analysis and optimization using
their known semantics.

The optimization of high-level abstractions within
object-oriented libraries is essentially compromised by the
library’s inability to see the context of how they are used
within the application program. Conversely, the compiler’s
inability to optimize the use of high-level abstractions is es-
sentially due to its ignorance of the user-defined semantics
of the library’s high-level abstractions. The success of high-
level abstractions within scientific computing is critically
dependent upon the ability of users to get high performance
from high-level abstractions that are otherwise compelling
to use due to the significantly enhanced productivity that
they represent.

Presently within scientific computing the successful
abstractions are relatively coarse grain (elliptic equation
solvers, etc.). Experience has found that finer granular-
ity abstractions exhibit a performance penalty due to either
higher function call overhead, poor cache behavior, or in-
sufficient inter-procedural analysis/optimization. However,
finer grain abstractions (e.g. multidimensional array ab-
stractions, finite element abstractions, etc.) are particularly
compelling because of how simply they permit the expres-
sion of numerical algorithms. Both coarse and fine granu-
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larity abstractions have important roles in simplifying sci-
entific software.

Scientific computing is unfortunately particularly perfor-
mance sensitive. Research that we will present in this paper
permits the compile-time analysis and optimization of even
fine granularity abstractions using their user-defined seman-
tics. Leveraging the user-defined semantics of high-level
abstractions is a particularly critical part of making high-
level abstractions useful within scientific computing. The
C++ language’s object-oriented mechanisms allow for the
definition of high-level abstractions and the generation of
user-defined types with overloaded operators. These mech-
anisms permit the definition of abstractions that are conve-
nient and intuitive for users. We present two object-oriented
libraries developed for scientific computation that provide
numerous abstractions that are compelling to users but rela-
tively fine grain and thus excellent targets for compile-time
analysis and optimization.

We have developed specific libraries to simplify the de-
velopment of serial and parallel scientific applications. The
A++/P++[18] library provides an essential serial and par-
allel array abstraction for C++ scientific applications. The
Overture[4] object-oriented framework permits even higher
level abstractions built upon the A++/P++ array class li-
brary and specific to solving Partial Differential Equations
(PDEs) on complex geometries. Since both A++/P++ and
Overture are libraries the compiler is oblivious to their user-
defined semantics and likewise the libraries cannot see the
context of the use of their abstractions within the user’s
application codes. It is discouraging that the development
of efficient code from high-level abstractions is blocked by
compilers that are unable to use very specific high-level se-
mantics essentially because it is user-defined.

In this paper we show how high-level serial and paral-
lel libraries have been used to simplify the development
of scientific applications. Our optimization approach uses
ROSE[3, 2] to implicitly define a higher-level grammar and
build from this grammar a tool for the representation and
modification of Abstract Syntax Trees (ASTs) of applica-
tions. Using ROSE, preprocessors can be built which intro-
duce optimizations using source-to-source transformations
for C++ applications. The resulting performance is equiva-
lent to F77 and C code. In this specific case the high-level
array abstractions are similar to those found in HPF (array
abstractions). However, our approach is not limited to the
specific HPF array abstractions and apply to any object-
oriented abstraction (e.g. higher level abstractions within
Overture). The result is a mechanism which can take a C++
object-oriented library and produce the compile-time opti-
mizations previously available only within a compiler for a
domain specific language with similar abstractions. This ef-
fectively permits any object-oriented library to appear indis-
tinguishable from a domain specific language (even though

its grammar is currently only implicitly represented). Fur-
ther, our approach should be a particularly simple mecha-
nism to define future domain specific libraries since they
can be developed and evaluated easily as object-oriented
libraries and optimized using an incrementally developed
preprocessor approach using ROSE.

Related work on telescoping languages [8] shares some
of the same goals as our research work. Other approaches
we know of are based on the definition of library-specific
annotation languages to guide optimizing source code
transformations [13] and on the specification of both high-
level languages and corresponding sets of axioms defining
code optimizations [14]. Our appraoach is related to that
of semantic expansion [9], but uses a source-to-source ap-
proach.

2. High-Level Parallel Abstractions

Application codes in scientific computing are becoming
more and more complex. The use of object-oriented design
techniques and programming languages represents a com-
mon approach towards overcoming many of the difficulties
arising from the need for flexible and highly reusable soft-
ware components. Usually large applications are based on
high-level abstractions which are provided by underlying
libraries. In our scientific applications, A++/P++ and Over-
ture are important examples of object-oriented libraries pro-
viding high-level abstractions for numerical computations.

2.1. A++/P++ Library

A++/P++[17, 18] is a C++ class library implementing
array operations for both serial and parallel environments.

The A++ serial array abstraction is similar to FORTRAN
90 in syntax. It provides multidimensional array objects
which simplify the development of numerical software and
provides a basis for developing parallel array abstractions.
P++ provides a parallel array class abstraction which shares
an identical interface to A++ abstractions by design. P++
provides a data parallel implementation of the array syn-
tax represented by the abstractions within A++. As a re-
sult, A++ serial applications can be recompiled using P++
and thus run in parallel. This provides a simple and ele-
gant mechanism for serial code to be reused in the paral-
lel environment; simplifying the development of scientific
software generally. While P++ shares a lot of commonal-
ity with FORTRAN 90 array syntax and the HPF program-
ming model, P++ provides a programmable mechanism for
the distribution of arrays and greater control as required for
multiple grid applications represented by both the overlap-
ping grid model and the adaptive mesh refinement (AMR)
model present in some numerical computations.
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Figure 1 shows a code fragment used to solve Poisson’s
equation in either a serial or parallel environment using the
A++/P++ classes. Notice how the Jacobi iteration for the
entire array can be written in one statement. The same code
alternatively runs on distributed memory parallel comput-
ers. Alternative distributions can be specified if the defaults
are inappropriate.

2.2. Overture

Overture[4] is an object-oriented C++ framework for
solving partial differential equations associated with com-
putational fluid dynamics applications within complex
moving geometries. It uses the method of overlapping grids
(also known as overset or Chimera grids; see figures 4, 5).
Overture includes support for geometry, grid generation,
difference operators, boundary conditions, database access
and graphics. In Overture, the fundamental building blocks
are objects such as grids and grid functions. These objects
can be manipulated at a high level. Details of the imple-
mentation, such as how a grid is stored, are hidden from
the user, but importantly all data is accessible to permit the
optional use of the data directly as required for lower level
optimizations. Within Overture, the A++/P++ array class
library is used both internally and within the user interface.

The example shown in figure 3 demonstrates the power
of the Overture framework by showing a basically complete
code that solves the partial differential equation (PDE)

�� � ��� � ��� � ������ � ����

on any overlapping grid. It shows higher level abstractions
represented within Overture (beyond that of the array ab-
stractions).

2.3. The performance penalty of high-level abstrac-
tions

A common problem within object-oriented C++ scien-
tific computing is that the high level semantics of abstrac-
tions introduced (e.g. parallel array objects) are ignored by
the C++ compiler. Classes and overloaded operators are
seen as unoptimizable structures and function calls. Such
abstractions can provide for particularly simple develop-
ment of large scale parallel scientific software, but the lack
of optimization greatly effects performance and utility. Be-
cause C++ lacks a mechanism to interact with the com-
piler, elaborate mechanisms are often implemented within
such parallel frameworks to introduce complex template-
based and/or runtime optimizations (such as runtime depen-
dence analysis, deferred evaluation, runtime code genera-
tion, etc.). These approaches are however not satisfactory
since they either require long compile times (hours) or are
not sufficiently robust.

3. ROSE Architecture

ROSE is a tool that provides a connection between a
library and a domain specific language. Based on an ab-
stract C++ grammar and the abstractions used in a library,
a higher-level grammar is generated that represents library
specific constructs as additional elements in the C++ gram-
mar. The C++ grammar plus these new elements is called a
higher-level grammar.

The main purpose of higher-level grammars is to ease
the task of the user to introduce a program transformation.
It should allow him to focus on those constructs that are li-
brary specific and qualify for transformation. Using ROSE
the qualification of the library specific constructs and the
generation of the higher-level grammar is automated. Ad-
ditional constraints on library specific constructs can be ex-
pressed using a query mechanism which allows interroga-
tion of the abstract syntax tree for program information.

Our approach is to add additional optimization capabil-
ities to the existing compiler optimizations. Therefore, we
developed ROSE as a preprocessor mechanism that allows
us to generate optimized C++ code which then has to be
compiled using a platform dependent C++ compiler.

A single compiler that would generate object code from
application source would not be practical since it would re-
quire us to address back-end code generation issues. This
would lead us toward platform-specific details we wish to
avoid.

It is important to mention that no modification of the base
language is possible, since the use of the optimizing prepro-
cessor is optional. This avoids any deviation from the C++
standard which would lead to portability problems for ap-
plications.

Our implementation is based on leveraging a standard
base language front-end for the development of the prepro-
cessor. We currently employ the Edison Design Group [6]
(EDG) C++ front-end and the Sage III intermediate repre-
sentation (the AST) which is based on SAGE [7]. The com-
ponent of ROSE that generates the code implementing the
ASTs (for the abstract C++ grammar and higher-level gram-
mars) is called ROSETTA [1].

In order to simplify and focus the development of a
library-specific optimizing preprocessor, we subdivide the
introduction of optimizations into two phases:

1. Recognition Phase:
The automatic recognition of high-level abstractions
within the user’s application code allows a prepro-
cessor to treat user-defined abstractions similarly to
builtin types in a domain specific language, see 3.1.

2. Transformation Specification:
A transformation is specified by the semantic actions
that are attached to language constructs that qualify for
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transformation in the recognition phase. Library devel-
opers are expected to specify the transformations that
will be used to optimize the user’s application code,
see 3.2.

3.1. Recognition of Abstractions

The automatic recognition of higher-level abstractions
allows us to treat a library as a domain specific language.
It is based on the type information stored with each expres-
sion in the AST and the signatures of functions. Additional
predicates are used to qualify statements as domain specific
statements.

In our present implementation we use a “qualifying-
predicate” for library specific statements. If the given pred-
icate holds on all statements within the scope of a given
statement this statement is qualified as a library specific
statement.

For example, given a code snippet of the program in fig.
8:

t = 0.0;
old_A = A;

Variable t is of type double and variables old A and
A are of type doubleArray. The class doubleArray
is a user defined abstraction and defined in the library with
an overloaded assignment operator. The qualifying predi-
cate defines user abstractions in the library for which op-
timizations have been implemented to qualify for transfor-
mation. The class doubleArray is one of those. There-
fore expressions of type doubleArray are qualified to be
transformed but expressions of type int are not. Hence,
the program fragment old A=A is qualified to be a library
specific assignment but not x=1. Qualification of program
constructs is not limited to type information. Basically any
information that can be computed by using attributes and
semantic actions can be used to define the qualifying predi-
cate.

A high-level abstract grammar is an extended form of
the base language abstract grammar with added terminals,
non-terminals, and rules associated with the abstractions we
want to recognize. They cannot be modified in any way to
introduce new keywords or new syntax, so clearly there are
some restrictions. However, we can still leverage the lower-
level compiler infrastructure. New terminals and nonter-
minals added to the base language abstract grammar repre-
sent specific user-defined functions, data-structures, user-
defined types, etc. More detail about the recognition of
high-level abstractions can be found in [3]

3.2. Specification of Transformations

Transformations are specified by defining functions to be
executed during a traversal at each node in the AST. We al-

low values to be passed downwards and upwards the AST.
This gives a similar capability as with inherited and synthe-
sized attributes in attributed grammars. In our current im-
plementation, inherited and synthesized attributes cannot be
combined with the same freedom as an attribute-evaluator
generator would allow, but it has turned out that our mecha-
nism is sufficient to implement complex queries needed for
gathering program information.

For example, a query can be used to gather information
about the types used in an expression, about the nesting
level of scopes, or the source that is represented by a given
subtree of the AST, etc.

A program transformation can be specified by a set of
possibly nested queries on the AST. However, the final step
is to compute a string value representing the new source
code. This string is then used as input to the front-end
and by re-invoking the front-end we create a new AST. The
transformation phase may be performed iteratively, to deal
with different transformations.

We provide mechanisms to only locally modify the AST
if only local optimizations are performed. For a more de-
tailed description of the transformation specification see [2].

3.3. Preprocessor Execution Phases

Figure 6 shows how the individual phases of compilation
are connected in a sequence of steps; automatically gener-
ated translators generate higher level ASTs from lower level
ASTs. The following describes these steps:

1. The first step generates the Edison Design Group
(EDG) AST. This AST has a proprietary interface and
is translated in the second step to form the abstract C++
grammar’s AST.

2. The C++ AST restructuring tool is generated by
ROSETTA [1] and is essentially conformant with the
SAGE II implementation. This second step is repre-
sentative of what SAGE II provides and presents the
AST in a form where it can be modified with a non-
proprietary public interface. At this second step the
original EDG AST is deleted and afterwards is unavail-
able.

3. The third step is the most interesting since at this step
the abstract C++ Grammar’s AST is translated into
higher level ASTs. Each parent AST (associated with
a lower level abstract grammar) is translated into all of
its child ASTs so that the hierarchy of abstract gram-
mars is represented by a corresponding hierarchy of
ASTs (one for each abstract grammar). Transforma-
tions can be applied at any stage of this third step and
modify the parent AST recursively until the AST asso-
ciated with the original abstract C++ grammar is mod-
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ified. At the end of this third step all transformations
have been applied.

4. The fourth step is to traverse the C++ AST and gener-
ate optimized C++ source code (unparsing). This com-
pletes the source-to-source preprocessing.

An obvious next and final step is to compile the resulting
optimized C++ source code using a vendor’s C++ compiler.

4. Performance Measurements

To show the value in using such an automated source-
to-source preprocessing tool, we compare the parallel per-
formance of a ROSE-transformed C++ code to an HPF im-
plementation solving the same problem. The C++ code is
written using the P++ parallel array class library and shown
in figure 8. Additional versions of this code have been writ-
ten in HPF, C, and using the A++ abstractions locally on
each processor. Using the abstractions available in the P++
library greatly simplifies code development with the result-
ing source code being quite compact and very easy to un-
derstand. We have used a preprocessor built using ROSE
to automatically transform the high-level abstractions to
code that can be highly optimized by the compiler, thereby
achieving high performance1. Through a performance com-
parison of these different versions of the same code (imple-
mented with different levels of abstractions) we will show
that these techniques enable users to write C++ code using
elegant high-level abstractions, yet still see runtime perfor-
mance rivaling FORTRAN 77 in a serial environment and
HPF in parallel.

We choose to solve the simple partial differential equa-
tion (PDE)

�� � �� � �� � ���� �� �� ��� �� � �� � 	 � (1)

���� �� �� � ����� �� ��� �� � � (2)

���� �� �� � ����� �� �� ��� �� � 
�� � 	 �� (3)

Where we fix an exact solution �� � ��� ���� � �� ��
used to determine the forcing ���� �� �� and boundary con-
ditions for the PDE. The domain � is the unit square
��� �� � ��� �	� ��� �	. We use centered finite differences to
discretize the � and � derivatives, and the leap frog method
to advance in time. This numerical method is formally sec-
ond order accurate and thus solves the PDE exactly. We use
this fact to ensure the correctness of our implementation and
to detect any errors introduced by the optimizing compiler.

Our ROSE transformed C++ implementation takes ad-
vantage of restricted pointers. That is, pointers are guar-
anteed to have no aliases. With this assumption, the code

1Minor manual corrections were required to fix current bugs in the au-
tomated code generation

should perform as well as a FORTRAN 77 implementation.
To test this for the platform of interest, we construct three
smaller test codes that simply apply a five point stencil op-
eration and then copy one array to another. This loop test
was written in FORTRAN 77, ANSI C, and ANSI C++.

Our test machine is ASCI Blue Pacific at LLNL. This
IBM machine consists of 256 compute nodes, each node
containing 4 332MHz. PowerPC 604e CPUs with 1.5 GB
of RAM. Our initial test was to confirm that our loop test
codes written in C and C++ could indeed achieve F77 per-
formance levels when run on a single processor. Table 2
shows the compiler options used to compile each version
of the loop test. This table also shows the total computation
time in seconds for the loop test, 100 repetitions of applying
a five point stencil operation and copying one 1000x1000
array to another. These results confirm that under the right
conditions, namely using restricted pointers and aggressive
optimization, C and C++ code can achieve FORTRAN like
performance.

F77 A++ Transformed A++ Code

22.2 s. 115.0 s. 24.1 s.

Table 1. Performance of identical five point
stencil using Fortran, A++, and automatically
generated code using a ROSE preprocessor.

We next investigate whether the code output by a ROSE
preprocessor is optimal. In Table 1 we present a compar-
ison of the performance of a typical finite difference op-
eration implemented using, FORTRAN 77, A++, and an
automatically transformed version of that A++ code (with
a preprocessor built using ROSE). These codes were com-
piled using the compiler options detailed in Table 2. We see
that the ROSE transformed version achieves essentially the
same performance as the F77 implementation.

We finally turn to our intended target, a performance
comparison of the numerical solution of the linear PDE
(1), (2), and (3). Separate codes solving these convection
equations have been developed using different languages
and abstractions: Con-HPF, Con-P++, Con-A++, Con-
ROSE. Con-HPF is the convection code implemented in
HPF. Con-P++ uses the highest level of abstraction avail-
able in the P++ library, and is the type of code that users
of the P++ library are expected to write. This code looks
much like HPF, but performs poorly. Con-A++ uses A++
abstractions locally on each processor and P++ for commu-
nication between processors. Con-ROSE is the code re-
sulting from the replacement of the serial array objects in
the Con-A++ with preprocessor-generated transformations
similar to those tested in Table 1. This code has at its core
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loops over C arrays and as seen in Tables 3 and 4 achieves
HPF like performance.

Two scaling studies are presented. The first shown in Ta-
ble 3 keeps the array size fixed as the number of processors
grows from 1 to 64 while the second test (Table 4) fixes the
array size per processor for all numbers of processors. We
see that all versions of the code scale similarly, but only the
code containing the ROSE preprocessor generated transfor-
mations performs at the same level as its FORTRAN coun-
terparts.

5. Conclusions

Within this paper we have presented some example high-
level abstractions used within our research work on nu-
merical methods together with an evaluation of their per-
formance on a relatively simple convection code. Clearly
the unoptimized use of the abstractions results in slower
performance than the equivalent HPF or F77 implementa-
tion. However, using a preprocessor built using ROSE and
leveraging the semantics of the A++/P++ abstractions al-
lows the same code to obtain performance equivalent to For-
tran on both serial and parallel computers. Within this pa-
per we have demonstrated an approach to use the semantic
information about user-defined abstractions to drive opti-
mizations which could not otherwise be done by the com-
piler and which complement those done by the compiler.
With the compile-time analysis and optimization of high-
level used-defined abstractions our work permits object-
oriented libraries to have compile-time support equivalent
to domain-specific languages.
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// Solve u_xx + u_yy = f by a Jacobi Iteration
Range R(0,n) //indices: 0,1,2,...,n
floatArray u(R,R), f(R,R) // declare 2 2-d arrays
f = 1.; u = 0.; h = 1./n; // initialize
Range I(1,n-1), J(1,n-1); // define interior

// data parallel statement
for( int iteration=0; iteration<100; iteration++ )

u(I,J)=.25*(u(I+1,J)+u(I-1,J)+u(I,J+1)+
u(I,J-1)-f(I,J)*(h*h));

Figure 1. Example A++/P++ code showing use
of array abstraction for Poisson’s equation.

int main()
{

CompositeGrid cg; // create grid
getFromADataBaseFile(cg,"myGrid.hdf"); // read grid
floatCompositeGridFunction u(cg);//create grid func
u=1.; // assign data
CompositeGridOperators op(cg); // create operators
u.setOperators(cg);
PlotStuff ps; // make a plot object
// --- solve a PDE ----
float t=0, dt=.005, a=1., b=1., nu=.1;
for (int step=0; step < 100; step++)
{
u+=dt*( -a*u.x()-b*u.y()+nu*(u.xx()+u.yy()) );
t+=dt;
u.interpolate(); // interpolate overlap bdys
// apply the BC u=0 on all boundaries
u.applyBoundaryCondition(0,dirichlet,allBndries,0);
u.finishBoundaryConditions();
ps.contour(u); // plot contours

}
return 0;

}

Figure 3. Overture code demonstrating use
of floatCompositeGridFunction abstraction. In
this example differential operators associ-
ated with u are combined to form a simple dis-
cretization of the convective diffusion equa-
tion ������� ��� � ����������� for an over-
lapping grid.
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Figure 4. Example overlapping grid used in
Overture code.

Figure 5. Example overlapping grid for com-
plex combustion cylinder geometry.
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Figure 6. Source-to-source C++ transforma-
tion with preprocessors using the ROSE in-
frastructure.

Higher-Level Abstract Syntax Tree

SgBasicBlock
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Figure 7. AST fragment representing t=0.0;
old A=A; in figure 8 (recognized as library
specific (in bold))
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xlf -qarch=auto -O4 -qhot .169 s.

xlc
-O5 -qarch=auto -qtune=auto
-qcache=auto -qalias=allp -qunroll=6 .159 s.

KCC

-O3 +K3 -qmaxmem=8192
–backend “-O5 -qalias=allp -qunroll=6”
–restrict –abstract pointer .158 s.

Table 2. Compiler Options used for differ-
ent versions of convection code and related
tests.

np Con-HPF Con-P++ Con-A++ Con-ROSE
1 39.7 359.6 133.9 38.8
2 23.4 192.4 72.4 20.7
4 14.1 113.0 44.3 14.0
8 6.9 58.4 22.9 7.5

16 3.9 30.2 12.3 3.8
32 2.2 16.2 7.0 2.5
64 1.2 8.8 3.6 1.4

Table 3. Scaling for constant size problem,
time reported in seconds.

np Con-HPF Con-P++ Con-A++ Con-ROSE
1 39.5 359.6 135.5 37.4
2 45.1 381.0 143.8 40.4
4 54.7 446.2 172.0 50.9
8 54.8 449.4 172.0 50.7

16 55.7 454.0 172.7 50.9
32 55.3 450.2 174.6 51.8
64 54.9 450.5 173.9 52.9

Table 4. Scaling for constant size per proces-
sor problem, time reported in seconds

#include "A++.h"

int main(int argc, char** argv)
{

int numProcs=0,i,j;
Optimization_Manager::
Initialize_Virtual_Machine("",numProcs,argc,argv);

const int Xsize=1003, Ysize=1003*numProcs;
const Range ix(-1,Xsize-2), iy(-1,Ysize-2), all;
const Range ix1(0,Xsize-3), iy1(0,Ysize-3);
const Range iU(Xsize-2,Xsize-2),iL(-1,-1);
const Range jU(Ysize-2,Ysize-2),jL(-1,-1);

doubleArray A(ix,iy),old_A(ix,iy),x(ix,iy),y(ix,iy);
double dx=1./(Xsize-3), dy=1./(Ysize-3);
double t=0.0,maxError, dt=0.1/(Xsize+Ysize);

for(i=x.getLocalBase(0);i<=x.getLocalBound(0);i++)
x(i,all) = i*dx;

for(j=y.getLocalBase(1);j<=y.getLocalBound(1);j++)
y(all,j) = j*dy;

x.updateGhostBoundaries();
y.updateGhostBoundaries();

A = (1.0 + t)*(2.0 + x + y);
A.updateGhostBoundaries();

t = 0.0;
old_A = A;
old_A.updateGhostBoundaries();
doubleArray temp(ix,iy);

temp(ix1,iy1) = A(ix1,iy1) -
dt*((A(ix1+1,iy1)-A(ix1-1,iy1))/(2.0*dx)+

(A(ix1,iy1+1)-A(ix1,iy1-1))/(2.0*dy)-
(4.0+2.0*t+x(ix1,iy1)+y(ix1,iy1)) );

A(ix1,iy1) = temp(ix1,iy1);
A(all,jL)=(1+(t+dt))*(2+x(all,jL)+y(all,jL));
A(all,jU)=(1+(t+dt))*(2+x(all,jU)+y(all,jU));
A(iL,iy1)=(1+(t+dt))*(2+x(iL,iy1)+y(iL,iy1));
A(iU,iy1)=(1+(t+dt))*(2+x(iU,iy1)+y(iU,iy1));
A.updateGhostBoundaries();
t += dt;

for (int k = 0; k<100; k++)
{
temp(ix1,iy1) = old_A(ix1,iy1) -

2.*dt*((A(ix1+1,iy1)-A(ix1-1,iy1))/(2*dx)+
(A(ix1,iy1+1)-A(ix1,iy1-1))/(2*dy)-
(4+2*t+x(ix1,iy1)+y(ix1,iy1)) );

old_A = A;
A(ix1,iy1)= temp(ix1,iy1);
A(all,jL)=(1+(t+dt))*(2+x(all,jL)+y(all,jL));
A(all,jU)=(1+(t+dt))*(2+x(all,jU)+y(all,jU));
A(iL,iy1)=(1+(t+dt))*(2+x(iL,iy1)+y(iL,iy1));
A(iU,iy1)=(1+(t+dt))*(2+x(iU,iy1)+y(iU,iy1));
A.updateGhostBoundaries();
t +=dt;

}
Optimization_Manager::Exit_Virtual_Machine();
return 0;

}

Figure 8. Convection code used for perfor-
mance benchmarks of high-level abstractions
(shown here is the P++ version of the code,
not shown are other versions of the same
code in HPF, and various levels of automated
and non-automated optimizations).
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// Automatically Introduced Transformation
{
LOOP_INDEX_DATA_VARIABLES_MACRO();
// Data variables declaration macro to support
// transformations (once per transformation)
Extra3 = Index(0,1); Extra4 = Index(0,1);Extra5 = Index(0,1); Extra6 = Index(0,1);

ARRAY_STATEMENT_TRANSFORMATION_DATA_MACRO(uLocal,ILocInterior,JLocInterior,Extra3,Extra4,Extra5,Extra6);

// Data variables declaration macro to support transformations (once per operand)

ARRAY_STATEMENT_OPERAND_TRANSFORMATION_DATA_MACRO(uLocal);
double* APP_RESTRICT uLocal_pointer = uLocal.Array_Descriptor.Array_View_Pointer5;

ARRAY_STATEMENT_OPERAND_TRANSFORMATION_DATA_MACRO(fLocal);
double* APP_RESTRICT fLocal_pointer = fLocal.Array_Descriptor.Array_View_Pointer5;

// for loop for 2D array operations with stride
for (index2 = base2; index2 <= bound2; index2++)

for (index1 = base1; index1 <= bound1; index1++)
{

uLocal_pointer[SUBSCRIPT(0,0)] = .25*(uLocal_pointer[SUBSCRIPT(+1,0)]+
uLocal_pointer[SUBSCRIPT(-1,0)] + uLocal_pointer[SUBSCRIPT(0,+1)]+
uLocal_pointer[SUBSCRIPT(0,-1)] - fLocal_pointer[SUBSCRIPT(0,0)]*(h*h));

}
}//end of tranformation block

Figure 2. Example of tranformed A++/P++ code from figure 1. This code uses macros for array
subscript computation and variable initialization. Replacing the high level array abstractions with
direct access to the underlying pointers results in improved performance.
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